Step of Proof: p-id-compose
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-id-compose
:
.....truecase..... NILNIL
1.
A
: Type
2.
B
: Type
3.
f
:
A
(
B
+ Top)
4.
x
:
A
5.
can-apply(
f
;
x
)
p-id()(do-apply(
f
;
x
)) =
f
(
x
)
latex
by (MoveToConcl (-1))
CollapseTHEN ((RepUR ``p-id can-apply do-apply`` ( 0)
)
CollapseTHEN (((
C
GenConclAtAddr [1;1;1])
CollapseTHENA (Auto
)
)
CollapseTHEN ((D (-2)
)
CollapseTHEN ((
C
Reduce 0)
CollapseTHEN (Auto
)
)
)
)
)
latex
C
.
Definitions
can-apply(
f
;
x
)
,
p-id()
,
do-apply(
f
;
x
)
,
f
(
a
)
,
Top
,
s
=
t
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
left
+
right
,
True
,
b
,
P
Q
,
t
T
,
False
Lemmas
true
wf
,
false
wf
origin